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0. Introduction 

This part of tutorial deals with basic concepts related to generation of sound, propagation of sound 

through media, and sound sources. Topics are divided in three parts what includes (1) physical 

properties of simple vibration systems which provide the basics for vibration and oscillatory motion of 

particles in acoustical wave in the medium ; (2) the physical properties of sound waves, their 

mathematical description, speed of sound and phenomena related with sound propagation in 

unbounded space and space with boundaries of other media or obstacles causing reflection, rarefaction, 

and diffraction of sound waves; and (3) elementary models of sound sources.  

1. Simple Harmonic Motion 

1.1 Lossless oscillator 

Simple harmonic motion is a periodic motion along a straight line by a mass with acceleration 

proportional to the distance from the center point. For such a linear system, the position of the mass is 

described by a sinusoidal function of time t with the amplitude A and frequency f (period T = 1/f): x(t) 

= A sin 2πft. 

Harmonic motion is typical for the mass-spring system shown in Fig. 1.1, in which restoring force F 

imposed by a mechanical spring is proportional to stretch x. There are other relations between F and x 

considered in mechanics but for acoustics linear systems well represent majority of phenomena. In a 

lossless system, it is assumed that there is no loss of energy in such a system. The equation of motion 

is a combination of Hooke's law, F = −Kx, and Newton's second law, F = ma = mẍ: 

 

Fig. 1.1. Simple mass-spring vibrating system and its acoustic equivalent, the Helmholtz resonator. From 

reference [1]. 

The constant K represents stiffness of the spring in Newtons per meter (N/m). The equation for forces 

in the system is:  

     (1.1) 

where 

      (1.2) 



The equation solves to the momentary position: 

     (1.3) 

where           (1.4) 

is the natural angular frequency of the system whose natural frequency f0 fulfils relation ω0=2πf0. 

By differentiating and double differentiating, the velocity and acceleration in the system can be 

calculated whose amplitudes are multiplication by ω0 and ω0
2
, respectively and phases are such that 

the velocity is shifted by 90
o
 (maximum velocity is while passing the x = 0 center point), and 

acceleration is opposite in phase (180
o
) to the position (for maximum shift away from the center the 

acceleration is the largest towards the center). 

The amplitude and initial phase of motion results from a combination of the initial displacement x0 and 

initial velocity v0 applied to the system: 

     (1.5) 

 

 

Fig. 1.2. Relative phase of displacement x, velocity v, and acceleration ẍ of a simple vibrating mechanical 

system. From reference [2]. 

The energy of harmonic motion is E = KA
2
/2 = mvmax

2
, where K is the stiffness constant, and vmax the 

maximum velocity. For more details see [2]. 

 

1.2. Superposition of Harmonic Motions 

Representing trigonometric functions with complex exponential functions in symbolic notation, such 

as 

   (1.6) 

allows to consider superposition of harmonic motions as sum of vectors (phasors) rotating in the 

complex plane with angular velocity ω0. The real time dependence of each quantity can be obtained 

from the projection on the real axis. 

Such a superposition is shown in Fig. 1.3 for phasors representing harmonic motions of amplitudes A1 

and A2, and phases Φ1 and Φ2. Resulting signal has an amplitude A and phase Φ. 



 

Fig. 1.3. Phasor representation of two simple harmonic motions having the same frequency. From reference [2]. 

 

1.2.1. n Harmonic motions of the same frequency 

There are two phasors added up in Fig. 1.3. In more general case n phasors can be added. This results 

in an amplitude A and phase Φ of a sum of n harmonic motions as 

 

     (1.7) 

and 

.      (1.8) 

 

 

1.2.2. Beats: two harmonic motions with different frequencies: 

A combination of harmonic motions of frequency f1 and f2, for small Δf = f2 – f1 leads to periodic 

amplitude variations that create a sensation of beats. For 

  (1.9) 

when A1 = A2 then (phases are disregarded) 

x(t) = 2Acos(2π (Δf/2) t)cos(2π ((f1+f2)/2) t)    (1.10) 

 

the amplitude varies for zero to 2A. Corresponding beats are very pronounced (Fig. 1.4a). When 

amplitudes A1 and A2 are different the amplitude of their sum does not decrease to zero (Fig. 1.4b). 

Respective formulas are more complicated, or details see for example [2].  



 

Fig. 1.4. Waveform resulting from linear superposition producing beats a) same amplitudes. b) different 

amplitudes. From references [2] and [5]. 

Formula (10) represents amplitude modulation with carrier absent> Please note, that while the 

modulation frequency is Δf/2 = (f2−f2)/2 the frequency of beats (loudness change) is Δf.  

 

1.3. Damped oscillations 

Damping of system with harmonic motion is caused by loss of energy coming at most from viscosity 

of the fluid. In this case, the damping force is proportional to velocity 

F = -Rẍ,     (1.11) 

where R is the mechanical resistance. The equation of motion for damped system is: 

    (1.12) 

or 

     (1.13) 

where   and  

The solution of this equation represents cosine-like variation of angular frequency ωd weighted 

exponentially by e
-αt

  

    (1.14) 

where      .    (1.15) 

The damped oscillations for various α values are shown in Figs. 3 and 8 

a) b) 



 

Fig. 1.5. Displacement of a harmonic oscillator for different values of damping. The relaxation time is given by 

1/α. Critical damping occurs when α = ω0. From reference [2]. 

 

Basic parameters of damped oscillations include: 

a) relaxation time, which is a time after which the amplitude decreases e times 

     (1.16) 

b) the rate of energy loss  

   (1.17) 

c) the Q (Quality) factor, which is a ratio of spring force to the damping force 

    (1.18) 

 

1.4. Forced oscillations 

Forced oscillations occur when an oscillator is driven by an external force f(t) (see Fig. 1.6). Analysis 

of such a system is commonly done for a sinusoidal driving force f(t) = F cos ωt turned on at some 

time. The solution consists of a transient term, and a steady-state term that depends only on F and ω 

     (1.19) 

 

 

Fig. 1.6. A damped harmonic oscillator with driving force F(t). From reference [2]. 

 



The steady-state solution, includes the complex displacement and complex velocity: 

   (1.20) 

   (1.21) 

The mechanical impedance which is defined as ratio of force to velocity is another important 

parameter 

    (1.22) 

In these formulas   

In many textbooks, instead of presenting the displacement and velocity as complex variables, formulas 

describing magnitude of displacement (or velocity) and phase difference between displacement (or 

velocity) and driving force are given for sinusoidally-driven harmonic system These formulas 

represent magnitude of displacement and phase shown in Fig. 1.7.  

 

Fig. 1.7. Frequency dependence of the magnitude and phase of the displacement of a linear harmonic oscillator. 

From reference [2]. 

For the displacement, a quantity xs = F/K = F/mωo
2
 is the static displacement of the oscillator created 

by a constant force of magnitude F at zero frequency. The displacement amplitude approaches F/K for 

frequencies decreased down to 0 Hz. In the low frequency range, below the resonance peak, the 

oscillator is controlled by dominating stiffness. In this case of slow motion, the phase of displacement 



is nearly equal the phase of the driving force. At the  

resonance, when ω = ωd the amplitude becomes  

.     (1.23) 

For resonance peak, the Q factor is an amplification factor. The Q is the ratio of the amplitude of 

displacement at resonance to the static displacement. The system is called resistance dominated since 

the stiffness of spring is balanced by the mass inertia (reactance equals zero). For high frequencies 

(above the resonance peak), the displacement falls toward zero and the phase difference between 

displacement and driving force approaches 180
o
. In high frequency range, the system is controlled by 

the dominating mass. At extremely high frequencies variation of driving force is so fast that mass 

inertia prevents the system from any displacement. 

 

1.5. Transient response of an oscillator 

When a driving force is suddenly applied to an oscillator, its motion is usually complex. The impulsive 

excitation results in the damped oscillations with frequency ωd < ω0 and exponential decay directly 

related to the Q factor.  

Decrease in amplitude of damped system is shown in Fig. 1.8. According to formulas presented earlier 

relating Q with angular frequency ω the Q = ωoτ/2, where τ is the time required for the amplitude to 

decrease to 1/e (= 0.37) of its initial value.  

 

Fig. 1.8. Response of a damped oscillator (Q = 10) to impulsive excitation of a large force The amplitude falls to 

37% of its initial value in time τ, which corresponds to Q/n cycles. From reference [2]. 

When the driving force is periodic initial oscillator response consists of driving force frequency and 

exponentially decaying oscillations with natural frequency. Transient motion decays rapidly when the 

oscillator is heavily damped (small Q). For small damping, transient continues during many cycles of 

oscillation of driving force. For driving frequency close to the natural frequency there are strong phase 

effects between natural frequency and forced frequency including specific amplitude changes of the 

envelope and beats. This is shown in Fig. 1.9 for frequency of driving force comparable to natural 

frequency of the system in comparison with conditions in which driving force frequency is either 

larger or smaller than the natural frequency.  



 

Fig. 1.9. Response of a damped oscillator for natural frequency larger, smaller, and comparable to driving force 

frequency. From reference [3]. 

In Fig. 1.10 time waveforms are shown for various ratios of driving force frequency and natural 

frequency of the system. These waveforms indicate that even for a simple resonance system, the 

transient excitations can be quite complex.  

 

Fig. 1.10. Response of a simple oscillator to a sinusoidal force applied suddenly. The ratio f/fo of driving force 

and natural frequencies varies from 0.2 to 4.0, Q = 10. From reference [2]. 

Time waveforms seen in Fig. 1.9 result from the formula (1.24) below in which the first term 

represents exponentially decaying transient part of oscillation with frequency ωd and second term the 

steady state part of the oscillator response with frequency ω of driving force :  

   (1.24) 

 

1.6. Acoustic vibrating systems 

Some acoustic systems such as a piston of mass m moving with no friction in a cylinder and a 

Helmholtz resonator are shown in Fig. 1.11. 

 

Fig. 1.11.Simple vibrating systems:(a) piston in a cylinder; (b) Helmholtz resonator with neck of length L; (c) 



Helmholtz resonator without a neck. From reference [2]. 

The piston of mass m (Fig. 1.11a) which moves in a cylinder of area S and length L vibrates like a 

mass attached to a spring. The spring constant is K = γPaS/L (γ = 1.4 for air). The natural frequency of 

the motion is 

     (1.25) 

 

The Helmholtz resonator shown in Fig. 1.11b is purely acoustical system. It differs from the cylinder 

shown in Fig. 1.11a in abrupt geometrical change between the neck and the bottle V. This causes that 

the mass of air in the neck constitutes moving mass (there is no changes in pressure in the neck). The 

large volume of air V acts as the spring. This is important property of the Helmholtz resonator that 

large volume V and the neck are filled with the same medium. Unlike that, for cylinder if there is no 

specific piston constituting the mass other than medium it is hard to define the boundary for the mass. 

In other words, an empty cylinder constitutes rather a quarter wavelength resonator. 

For the Helmholtz resonator, the mass of air in the neck and the spring constant are given by the 

expressions 

      (1.26) 

and  

     (1.27) 

where ρ is the air density and c is the speed of sound. 

The natural frequency of vibration is given by 

     (1.28) 

In Fig. 1.11c, there is the Helmholtz resonator with no geometrical neck. The effective length comes 

from the "end correction" taken twice, which is 8a/3π = 0.85 a (a is the neck radius). The natural 

frequency of a Helmholtz resonator with no neck is as 

     (1.29) 

1.7. Driving point impedance 

A mechanical impedance of simple harmonic system was defined as the ratio of external force to the 

velocity of oscillation. In complex system, such as vibrating plate or other structure the impedance 

depends on the place at which the force is imposed and velocity measured. Therefore when the force F 

is applied at a single point and the velocity v is measured at this same point, the ratio of F/v is called 

the driving-point impedance.  



The measurement is often made by means of an impedance head, which consists both a force 

transducer and accelerometer (Fig. 1.12). In this measurement setup the inertial mass of the 

accelerometer adds to the structure introducing an error to the measurement; the mass should be mass 

as small as possible. 

 

Fig. 1.12. Impedance head consisting of an accelerometer and force transducer.  From reference [2]. 

Traditional measurement setup includes independent electromagnetic shaker, which provides constant 

force of excitation. The acceleration measured by the accelerometer has to be integrated to obtain a 

velocity signal of the movement. If the force is constant along the swept frequencies the measured 

velocity signal is directly proportional to impedance of interest. 

 

2. Sound waves in air 

The important point for considering sound wave is that the ear in our hearing process predominantly 

reacts to pressure variations in air resulting from a soundwave. This places sound pressure in first 

place among the various acoustical parameters characterizing the acoustic wave propagation. Luckily 

sound pressure is the easiest parameter to measure. 

 

2.1. Plane wave 

Sound waves are the mechanical waves that propagate in any medium that has mass and elasticity. 

Those include gases, fluids and solids. Gases (e.g. air) and fluids (e.g. water) do not have elastic 

response to shear, only the response to compression and thus waves that can propagate in gases and 

fluids are longitudinal, with the motion of molecules being in the same direction as the direction of the 

wave itself (Fig. 2.13). Solids have both shear and compressive elasticity. Therefore, in solids both 

transverse (shear) and longitudinal (compressive) waves can propagate each with different speed and 

directivity. Compressive and shear waves are often explained by the chain of previously discussed 

spring-mass harmonic motion systems (Fig. 2.14). In general, a sound wave can be treated as the 

propagation of the local compressions and rarefactions of oscillating molecules. In acoustics, the 

thermodynamics of molecule motion is usually disregarded. With this view, with no sound wave 

propagated there is no particle motion in the medium. This is justified by the fact, that sound pressure 

level of noise associated with Brownian motion is in the range of −30 dB. 

 



 

Fig. 2.13. Idealized explanation of longitudinal wave in gas. 

 

 
Fig. 2.14. Model of compressive and shear waves by the chain of spring-mass harmonic motion systems. 

There are three major types of sound waves considered to represent most of real sound waves with 

some simplification to have convenient mathematical description. These include plane wave 

propagating along one direction as it would be generated by an infinite plane surface moving 

perpendicularly to it, the spherical wave generated by a small pulsating source and spreading out 

omni-directionally in three dimensions, and a cylindrical wave generated by line of pulsating sources 

and propagating omni-directionally in two dimensions. It is the simplest to consider plane waves as 

only one space coordinate x has to be taken into account. 

 

 

 
 

Fig. 2.15. A plane wave: infinitely small volume of medium moving along wave direction (x). Element 
ABCD moves forward by displacement ξ  changing its volume to A’B’C’D’. From reference [2]. 

 

In Fig. 2.15, the displacement and expansion of the air due to sound wave is represented by element 

ABCD having thickness dx and volume Sdx which moves to the position of A'B'C'D' also increasing 

its volume by dV 

 

,     (2.30) 

 

The volume change by dV creates change in pressure pa by dpa, which is 

 



     (2.31) 

 

In equation (2.31) the proportionality constant K is called bulk modulus and describes to physical 

compressibility of a medium (either gas or fluid). The small variation dpa of atmospheric pressure pa 

is called sound pressure and denoted by p. Equation (2.30) allows to rewrite Eq. (2.31) as 

 

     (2.32) 

 

 

Motion of the element ABCD must follow the Newton's second law F = ma what incudes the 

difference in force F along displacement ξ, and acceleration a of mass VSρ of the medium enclosed 

by volume V: 

 

, or .   (2.33) 
 
Applying Eq. (2.32) to Eq.(2.33) leads to the one-dimensional wave equation for displacement: 

 

     (2.34) 

and a similar equation for sound pressure: 

 

     (2.35) 

 

In general form of wave equation the ratio K/ρ = c
2
, where c is the propagation speed of sound. 

Therefore the equation (2.35) can be written in the form 

 

     (2.36) 

 

In all these equations, the physical properties of medium are represented by bulk modulus K and 

density ρ. 

 

In normal conditions, that is not for a very high frequencies, or low frequencies and not close to 

thermo-conductive materials, the sound wavelengths are long enough to prevent from thermal 

conduction between points of high and low pressure. This is valid for most common conditions of 

sound propagation in air. Therefore, the wave behavior is considered adiabatic, and described by 

 

paV
γ
 = constant     (2.37) 

 

where pa is atmospheric pressure and γ = Cp/Cv = 1.4 is the ratio of the specific heats of air at constant 

pressure and at constant volume. The sound speed c can be thus expressed as: 

 

     (2.38) 

 

Sound speed in air noticeably changes with temperature, increasing with temperature. The change of 

sound speed with temperature follows the equation 



 

     (2.39) 

where T is the absolute temperature. Another relation of sound speed to temperature valid for 50% 

relative humidity is 

 

c ≈ 332(1 + 0.00166ΔT) [m/s]    (2.40) 

where ΔT is in 
o
C. 

 

Sound speed is about 343 m/s in room temperature and 331 m/s in temperature of 0
o
 Celsius.  

 

 
Table 2.1 Sound speed in various materials. From reference [1]. 

 
 

 

 

2.1.1. Solutions to plane wave equation 

There are two solutions to wave equation: 

 

p(x,t) = f1(x − ct)+ f2(x + ct)    (2.41) 

 

where f1(x − ct) represents a wave of an arbitrary spatial shape f propagating in the +x direction at 

speed c, and f2(x + ct) a wave of an arbitrary spatial shape f propagating in the −x direction at speed c. 

 

In frequency domain (for sinusoidal excitation), solutions to wave equation have a form that uses 

complex notation 

 

   (2.42) 

 

where k = ω/c = 2π/λ is a wave number equivalent in its role along distance x to angular frequency ω in 

time. The λ = cT = c/f is the wavelength corresponding to the period T = 1/f. 

 

For wave of angular frequency ω traveling in the +x direction the equation has the form: 

 

p = e
−jkx

e
jωt

  cos(ωt − kx).    (2.43) 

 

Complex notation on the left represents its real part shown on the right.  



 

 

2.1.2. Wave impedance 

Assuming that p = e
−jkx 

e 
jωt

 and also that ξ must have similar form but different amplitude we can 

calculate by differentiating p in x dimension, and ξ in time t (the equation (2.33)). Then, the relation 

between sound pressure p and particle velocity u is 

 

 

     (2.44) 

 

and finally 

 

     (2.45) 

 

where u is the particle velocity. 

 

The wave impedance (or specific acoustic impedance) is for plane wave a real quantity: 

 

,     (2.46) 

 

Wave impedance is only related to the physical properties of medium: density ρ and sound speed c. 

Thus for plane wave, the acoustic pressure and particle velocity in the propagation direction are in 

phase: plane wave creates best conditions for transport of energy with the direction of wave 

propagation. This relation is clearly seen in Fig. 2.16. Particle displacement ξ, in Fig. 2.16 part (a), 

creates changes in density of medium molecules (b) and thus an increase or a decrease in pressure. 

Differentiating particle displacement to obtain the particle velocity u in (c) creates phase shift in 90
o
 

(particle at maximum displacement is at zero velocity). Therefore pressure shown in panel (d) is in 

phase with velocity u in panel (c).  
 

 
Fig. 2.16. A plane wave traveling in the positive x dimension. (a) Displacement ξ as a function of position. (b) 
Spacing of particles displaced accordingly to (a). (c) Particle velocity. (d) Pressure and condensation. From 
reference [4]. 

 

 

The units of wave impedance are Pa m
−1

 s (kg m
−2

 s
−1

). This unit is called rayls (after Lord Rayleigh - 

John Strutt (1842−1919)). Wave impedance changes with temperature:  



 

z = ρc ≈ 428(1 − 0.0017 ΔT) kg m
−2

 s
−1

    (2.47) 

 

where ΔT is in degrees Celsius. For air at temperature 0
o
C and standard pressure the wave impedance 

of air equals 428 rayls. For a comparison, wave impedance of fresh water is 3560 times greater than 

for air.  

 

2.2 Spherical wave 

Wave equation for the spherical wave is typically treated in polar coordinates. This equation can be 

found in suggested readings. Here, only the solutions to it will be discussed. General solution for 

pressure p in spherical wave is a superposition of two waves: wave outgoing (-jkr) and wave incoming 

(+jkr) to the origin of the disturbance 

 

     (2.48) 

 

The acoustic particle velocity u for the outgoing wave (only for A, B = 0) is 

 

     (2.49) 

 

There are two components of the particle velocity u in spherical wave. The far field component is in 

phase with pressure change. It falls off over distance with 1/r. The near field component is 90
o
 phase 

shifted and decreases with 1/r
2
 over distance. These components are called far and near field, 

respectively, as the 1/r
2
 component is particularly large close to the origin but quickly diminishes with 

distance. The 1/r far field component is dominating at large distances from the wave origin. The far 

field u component is related to pressure p through ρc wave impedance exactly as it was for the plane 

wave (but both pressure and particle velocity decrease with distance with 1/r). Near and far field 

components are equal to one another at a distance of about 0.16λ (Fig. 2.17). 

 

 
 

Fig. 2.17. Relation between nearfield and far field particle velocity components with distance for spherical 
wave. From reference [4]. 

 

Ratio of pressure and particle velocity gives the wave impedance for spherical wave which depends on 

distance from the origin of the wave: 

 

.     (2.50) 



Near the origin, when kr  0 wave impedance is much smaller than ρc. It approaches ρc at large 

distances. 

 

2.3 Sound intensity 

Sound intensity is the vector quantity to describe the flow of the acoustic energy carried forward with 

the wave. Its value is defined as a sound power per unit area of surface perpendicular to the direction 

of sound propagation. As a vector sound intensity points at the direction of propagation. The acoustic 

intensity I is measured in watts per square meter. For progressive wave, sound intensity increases with 

sound pressure. For standing wave, the sound pressure may be large, but the intensity remains small 

since the energy is not transported with the wave. Energy that is temporarily stored in the medium, 

either moving back and forth or stored in mass reactance close to the surface of a sound source 

(discussed later) does not contribute to the sound intensity. 

 

 
 

Fig. 2.18. Graph explaining change in sound intensity with distance from the origin for spherical wave. 
From reference [1]. 

 

For a plane wave, the sound intensity is calculated just like for power from voltage and current being in 

phase in electric circuits  

 

     (2.51) 

where p and u are effective rms quantities. 

 

For spherical wave, large part of the energy in the nearfield (close to the origin) is not radiated because 

1/jkr factor creates 90° phase shift of particle velocity relative to the sound pressure. The radiated 

intensity is related to the far field component of the velocity in Eq. (2.49), and sound intensity 

decreases with 1/r
2
 (Fig. 2.18). 

 

The total power P radiated with a spherical wave can be calculated by integrating I(r) over a spherical 

surface of radius r, giving 

 

     (2.52) 

 

A source radiating a power of 1 mW as a spherical wave produces an intensity level, or equivalently a 

sound pressure level (SPL), of approximately 79 dB at a distance of 1 m. At a distance of 10 m, 



assuming no reflections from surrounding walls or other objects, the SPL is 59 dB. Decibel scale for 

sound power is constructed in similar way as for sound intensity with reference power of 10
-12

 Watts. 

 

For an ideal plane wave the surface perpendicular to the direction of wave propagation is assumed 

infinite. Thus, calculating total sound power level for plane wave is not possible (sound power in ideal 

case would be infinite). 
 

 
 

Fig. 2.19. Sound pressure levels and examples of corresponding everyday sounds. From reference [5]. 

 

2.4 Decibels: Sound intensity level and sound pressure level 

Decibel scale in acoustics is very common as human ear takes logarithm of sound pressure to create 

sensation of loudness which was first expressed by the Weber−Fechner’s law formulated by Fechner in 

Elemente der Psychophysik in 1860. The intensity level is defined as  

 

     (2.53) 

 

in decibels. The factor 10 creates conversion from basic unit of bell (after Graham Bell) to decibel. The 

reference intensity I0 is selected as 10
-12

 W/m
−2

, which is selected as a simple number (meaning that 

only integer exponent was selected), providing sound intensity close to the threshold of human hearing 

in the frequency range from 1 to 3 kHz. 

 

The sound pressure level (SPL) is defined as  

 

     (2.54) 

 

with reference sound pressure of 20 μPa selected to correspond to I0 (p0 is the square root of I0 

multiplied by ρc; in numbers p0 equals square root of 412∙10
−12

). For plane wave in air the dB scales 



for sound intensity and sound pressure are identical. For p and p0 rms values are used because of 

relation to sound intensity I ≈ p
2
. On the SPL scale, 1 Pa corresponds to about 94 dB. Examples of 

sound pressure levels for everyday sounds are given in Fig. 2.19. 

 

 

2.5. Sound reflection and transmission 

There are several phenomena which occur in media whose dimensions are limited, namely reflection, 

transmission, refraction, absorption, and diffraction (Fig.2.20). 

 

 
Fig. 2.20. Basic changes in sound propagation for incident wave hitting an object: reflection, diffraction and 
acoustic shadow. From reference [5]. 

 

 

When a wave passes variations in the properties of the medium its propagation is disturbed. Gradual 

changes in the medium lead usually to a change in the speed and direction of propagation, which is the 

phenomenon of refraction. When there is an abrupt but smooth boundary between the two media (Fig. 

2.21), an example of which is the surface of a see or a lake, the acoustic wave partly undergoes 

specular reflection and partly refracts according to the Snell's Law of geometrical optics  

 

     (2.55) 

 

where indexes 1 and 2 refer to the first and second medium (incident and refracted waves), 

respectively, k1 and k2 are the wave numbers and c1 and c2 the sound speeds. This relation imposes 

obvious property that the frequency of excitation remains the same in both media. As for optics Θ1 and 

Θ2 are the angles with respect to the normal to the boundary. In addition, in such a case angle Θ3 of a 

reflected sound equals incident angle Θ1 because of specular reflection. 

 



 
Fig. 2.21. Sound refraction at the boundary between two media: A. c2 < c1. B. c2 > c1. From reference [1]. 

 

It is to note that except for purely technical applications that usually only occur for ultrasound, the 

sound speed in most media surrounding us in real life is greater than that in the air. The first at hand 

evident example is see water or fresh water. The sound speed in the water is about four to five times 

greater than that in the air (343 m/s in air versus 1484 or 1500 m/s – fresh or see water). Therefore for 

any angle of incidence Θ1 different from 0
o
, the Θ2 in the water is larger. There is a critical Θ1 value for 

which the Θ2 = 90
o
 meaning the so called total internal reflection. A total internal reflection, which is 

very common in optics, results in inability for a soundwave to enter the new propagation medium. For 

sound entering the water from the air, critical Θ1 can be calculated as follows: 

 

sinΘ2 / sinΘ1crit = 1484/343 = 4.32  sinΘ1crit = 0.23  Θ1crit = 13.36° . 

 

The value tells us that when the angle of incidence of sound wave approaching water is further away 

from normal to the surface than about 13° the soundwave is reflected in full from the water surface. 

This kind of phenomenon can be generally observed for sound in air confronted with boundaries of 

other media as for most substances the sound speed is significantly larger than that in the air (see Table 

2.1). Thus, an important condition to consider is the reflection of sound approaching media boundary 

at normal angle. The purpose is to estimate the amplitude of sound pressure and particle velocity of 

reflected and transmitted sounds with respect to the incident sound. 

 

For acoustic wave, the two media are different when their wave impedances z1 and z2 differ from each 

another. Analysis of reflected and transmitted waves is commonly presented in a simple way in 

textbooks. Assume that incident pressure plane wave is Ae
−jkx

 moving in plus x direction with 

amplitude A. Similarly the reflected wave of amplitude B can be written as Be 
jkx

 as it travels in minus x 

direction. The transmitted wave is represented by Ce
−jkx

. The problem to solve is to find ratios B/A and 

C/A of amplitudes thus to refer transmitted and reflected waves to the incident wave. The boundary 

conditions require that the pressure on the one side (for incident combined with reflected wave) is 

equal to the pressure at the other side (for transmitted wave) 

 

A + B = C.       (2.56) 

 

Similarly sum of particle velocities at the incident side has to be equal particle velocity at the 

transmitted side. According to the definition of wave impedance, for pressure amplitudes A and B, the 

plane wave particle velocities are A/z1 and B/z1, and at transmitted side C/z2 thus 

 

,      (2.57) 

where minus sign comes from the change of the travel direction of reflected wave. 



A combination of the two equations leads to the ratios B/A and C/A of amplitudes 

 

 

,     (2.58) 

 

and 

 

.     (2.59) 

 

Similar equations developed for the sound intensities are for reflected sound: 

 

,     (2.60) 

 

and transmitted sound: 

 

,     (2.61) 

 

where I0, Ir, and It are respectively sound intensities of the incident, reflected, and transmitted waves. 

 

It is possible to derive some important properties of reflection and transmission from equations (2.58) - 

(2.61).  If z2 = z1, then B = 0 and C = A. Therefore, there is no change in transmission to a new 

medium, there is no new medium in terms of the sound wave propagation. In practice, this is also a 

case when there is a small difference in wave impedances, for z2 ≈ z1. For z2 > z1, the reflected wave is 

in phase with the incident wave (a pressure maximum reflects as a pressure maximum). For z2 < z1, 

there is a phase inversion of the reflected wave and a pressure maximum is reflected as a minimum. 

For z2 » z1 or z1 » z2, the reflection is almost total. In practice, even a tenfold difference in wave 

impedances produces strong reflection, as B/A = 0.9/1.1 = 0.81 (in the example arbitrary z2 = 1, z1 = 

0.1). Equation (2.58) shows that for z1 » z2 the transmitted wave is of doubled pressure amplitude. This 

is not related to any transmitted wave, however, since the particle velocity in such case in medium z2 

equals zero. This is clearly seen in equations (2.60) and (2.61) for sound intensities. 

 

It should be noted that the conditions for a boundary with solids are different. For most angles of 

incidence, energy of the incoming longitudinal sound waves in gas or fluid is in part converted to 

longitudinal and in part to transverse waves at the boundary. Only in case of isotropic solid medium 

and normal incidence propagation remains longitudinal in the solid, and equations (2.58) to (2.61) can 

be applied. For other angles of incidence particle velocity vector component parallel to the boundary 

surface ‘slides’ along it and produces transverse wave in solid medium. Analysis of this phenomenon 

is very complex. 

 

As it was mentioned, the presented reflection/transmission rules are valid for large and flat boundary 

surfaces. For small objects that are smaller than the sound wavelength (size up to 10 times the 

wavelength) the wave approaching scatters in all directions. So called acoustic shadows behind 

obstacles are complementary to reflection and scattering of incoming wave. Very large objects 

compared with the wavelength produce observable shadows.  

 

Objects of size comparable to the wavelength due to diffraction around the edges diminish or entirely 

eliminate acoustic shadow at distances comparable to objects diameter. It is important for sound waves 

propagation that for a given object, the shadow can be noticeable for high audible frequencies but not 



existing in low frequency range. This is because the wavelengths for the sound propagating in the air 

changes from about 3.43 meters down to 3.43 centimeters for increase in frequency from 100 Hz to 

10000 Hz. Sizes of most things surrounding us fits these dimensions. Set of chairs may be scattering 

for waves in lower frequency range but their flat seats and back plates may provide specular reflection 

for frequencies above 5 kHz.  

 

 
 

Fig. 2.22. Diffraction and acoustic shadow: 
a) around the obstacle b) through the aperture 
From reference [6]. 

 

Fig. 2.23. Diffraction of plane wave on water 
behind the apertures of different size. 
Exemplification of the Huygens principle.  
From reference [6]. 

 

 

The diffraction of soundwaves follows the well-known Huygens (1629-1695) principle which later 

found mathematical formalization in diffraction equations by Fresnel (1788-1827) and Kirchoff (1824-

1887). The principle states that any point at which a wave arrives becomes a source of the spherical 

wave. In non-disturbed conditions such as for the middle part of largest apertures in Fig. 2.22b and in 

photographs shown in the upper left panel of Fig. 2.23 the sum of spherical waves simply restores the 

plane wave in the next position of propagation. In contract, at any edges at the obstacles or apertures 

the diffraction in a form of partial spherical wave can be observed. For small apertures in Fig. 2.23 the 

spherical wave front at the output of the apertures exemplifying the Huygens principle is clearly seen.  

 

 
Fig. 2.24. Exemplification of (a) specular, mirror-like reflection, and (b) scattered reflection. From reference 
[12]. 

 

In contrast to specular reflection, scattered reflection regardless of the angle of incoming sound 

produces waves reflected at random angles (Fig. 2.24). Scattering results from reflecting from porous 

surfaces. For light, essentially all surfaces, except those especially polished for a mirror-like effect are 

a source of scattered reflection. This makes it possible for us to normally see almost all objects in the 

environment. Diffraction and scattering of sound is complex due to the range of wavelengths that 

correspond to audible range of frequencies. A surface of x by y dimensions 1 by 1 meter can be 

perfectly reflecting in high frequency range in which the wavelength is of few centimeters or less, or 

diffraction will dominate for sound wave of 1 kHz or less for which the wavelength is 0.3 to more than 

3 meters long. Common objects or structures like, for instance, a staircase can provide specular 

reflection as a large object (no steps visible by sound) in low frequency range (less than 100 Hz), 



specular reflection from a surface of each step in high frequency range (3 kHz and above), or cause a 

scattered reflection for wavelengths corresponding to mid frequency range. Scattered reflection is an 

important phenomenon for concert halls and will be treated in a greater detail in room acoustics 

section. 

 

 

2.6. Sound absorption 

Absorption is related to attenuation of sound in a medium due to dissipation of acoustic energy by of 

various kinds of processes. Second usage of this term is for the absorption of energy occurring during 

reflection of a wave from a surface (e.g. a wall). This is a major issue in room acoustics as this kind of 

losses is dominating and will be treated in the room acoustics section.  

Sound wave is attenuated as it propagates because an element of the air compressed in the wave 

changes its shape since the compression occurs along one dimension, the direction of propagation. The 

shape change dissipates part of the energy through viscosity among particles which is small but 

noticeable. There are also thermal effects due to local temperature rise that follows the compression. 

Heat can be conducted from the warmer compressed parts to the cooler expanded parts of gas. Next 

reason is that gas such as air is not an ideal gas. Oxygen and nitrogen molecules rotate and vibrate, and 

sound wave energy transfers to the modes of molecular movement unrelated to the propagation of the 

sound wave. These are so called molecular losses. 

 

 
Fig. 2.25. Absorption of sound in air at 20

o
C. From reference [1]. 

 

The amplitude decays during the propagation of a sound wave is represented by term e
−αx

 in 

propagation equations by introducing the attenuation coefficient α. This is the only factor decreasing 

the amplitude in a plane wave. In spherical wave, absorption decreases the amplitude as an additional 

factor to 1/r decrease related to distance. As the intensity is proportional to pressure squared the decay 

of sound intensity due to absorption is e
−2αx

 and for spherical wave it is and additional factor to 

decrease corresponding to 1/r
2
 due to the geometry of the wave. The attenuation coefficient α is 

frequency dependent, and α(f) ≈ ω
2
. This is because the viscous and thermal losses both increase with f 

2
.  

 

For dry air, the sound absorption is small. With an increase in humidity water vapor molecules through 

their collisions with air oxygen and nitrogen molecules support transfer of acoustic energy to the 

vibration modes of molecules causing the attenuation of sound over a wide range of frequencies. For 

10 kHz (Fig. 2.25), the attenuation is the highest for about 20% relative humidity (at 20
o
 C). Lower 

frequencies are less attenuated but the pattern with peak within 10- 20% of relative humidity remains 

the same. 



 

Large attenuation of high frequencies by air absorption is significant for propagation of sound over 

large distances, specifically outdoors. Indoors, the attenuation during propagation can be ignored in 

small rooms but not completely in very large rooms. Atmospheric absorption amounts to about 0.1 

dB/m at 10 kHz (see Fig. 2.26). At a distance of 50 m, it results in a decrease in level by as much as 5 

dB.  

 

Figs. 2.26 and 2.27 allow for a comparison of how the sound is absorbed in the air and in the water. 

The difference is large. For see water, attenuation at 10 kHz is 1 dB per kilometer whereas it is 100 dB 

in the air. For fresh water the attenuation is nearly two orders of magnitude smaller than that for see 

water (about 0.003 dB/km). This is because or magnesium salt and boric acid present in see water. 

They also cause that in see water absorption is not a straight line in log frequency – log absorption 

coordinates as it is for fresh water. 

  

Fig. 2.26 Absorption of sound in the air for 

various values of relative humidity. From 

reference [7] 
 

Fig. 2.27. Absorption of sound in fresh and 

see water at depth 0 m. From reference [7] 

 

 

2.7. Temperature effects 

There are also other factors such as wind, turbulences, and temperature change that strongly affect 

propagation of sound wave. These effects are most important for outdoor long-distance propagation of 

sound in the atmosphere. 

 

Normal temperature conditions are associated with the decrease of temperature with height. This 

decrease depending on the type of weather is about 0.5−1.5 
o
C per 100 m. Normal temperature gradient 

causes upward refraction of sound wave. This is because of gradual increase of sound speed with 

temperature and thus the height. Normal weather conditions are not maintaining long sound 

propagation at the ground. If only bending of wave rays were considered as it is seen in Fig. 2.28 then 

sound shadow zones with no sound would occur away from the sound source at the ground. This is not 

the case due to dispersion on air turbulences which is discussed later. 



 
 

Fig. 2.28. Sound refraction resulting from normal temperature gradient. From reference [7]. 

 

 
Fig. 2.29. Sound refraction resulting from inverse temperature gradient. From reference [7]. 

 

Temperature inversion creates conditions in which there is an increase in temperature with height (Fig. 

2.29). Such temperature conditions cause downward refraction of sound wave. Again, this is because 

of changes in sound speed, in this case gradual increase of sound speed with the increase in 

temperature and thus the height. Inversion creates conditions for long distant propagation of sound 

especially when downward bending of sound waves is supported by consecutive reflections from flat 

surface, such as water. Temperature inversion is most common early at morning and in the evening 

when sun rise or sun set differently heats various layers of the atmosphere. Other plausible conditions 

for temperature inversion occur when warm layer of weather front slides up on top of the cold air at the 

ground. Since such a front is usually associated with rainy weather to come people used to consider 

good hearing of distant objects as a predictor of rain. It should be noted that temperature inversion only 

occurs up certain height over ground. Actual sound propagation is as it is shown in Fig. 2.30. 
 

 
Fig. 2.30. Sound refraction resulting from partial temperature inversion. From reference [7]. 

 



2.8. Effects of wind 

Effects of wind are similar to temperature effects with respect to bending sound rays upwards or 

downwards. However, actual mechanism is different. Wind increases its speed with height from few 

meters per second at the ground to over 10 m/s at 100 m over the ground (in normal weather 

conditions). Sound propagation is affected as it is shown in Figs. 2.31 and 2.32: propagation is limited 

in direction against the wind, and strengthened at the surface in the direction with the wind. 

 

 
 

Fig. 2.31. Sound rays resulting from wind blowing with increasing velocity with height. From reference [7]. 

 

 

Fig. 2.32. Change in sound wave front shape for propagation with the wind and against the wind. From 
reference [12]. 

 

In the case of propagation with the wind soundwave is tilted toward the ground and form a king of a 

propagation channel at the surface. Bending of sound during propagation against the wind forms a 

wave front uniformly tilted upwards. 

 

2.9. Interaction with the ground 

Another factor worth mention is the interaction of sound wave along the ground (at normalized height 

of 4 m). This interaction is significant and is carefully treated in mathematical models of propagation 

in which flow resistivity of the ground surface is taken into account. For instance, a 7-cm layer of fresh 

snow will attenuate sound by more than 25 dB in frequency range of about 300 Hz at distance of 15 m 

from the sound source. Frozen ice surface has no additional attenuation. Grass attenuates sound at 

frequencies of 500-2000 Hz with noticeable effect at distance of 100 m and more. The influence of 

surface on wave propagation is carefully treated in acoustics in addition to geometry of the wave and 

absorption of wave in the medium. 

 

2.10. Diffraction on turbulences  

The atmosphere as a medium is characterized by constant irregularities coming from local differences 

in temperature, pressure, wind conditions, humidity and presence of other substances such as water 

Wind 

Wind 



droplets in foggy conditions. These changes cause sound wave diffraction during propagation which is 

associated with random changes in propagation speed, and direction. 

 

 
Fig. 2.33. Change in sound wave front shape for propagation with the wind and against the wind . From 
reference [7]. 

 

There has been research mostly based on numerical simulations and modelling showing that 

diffraction on turbulences is the main cause for lack of acoustic shadow seen in examples of 

propagation in Figs. 2.28 and 2.31 expected from wave propagation predicted from gradual average 

changes in temperature or wind speed. Diffraction on turbulences leads to sufficiently significant 

changes in propagation direction so the acoustic shadow zones are not silent zones but there are merely 

observed some decrease in level. Fig. 2.33 shows an output from numerical simulations in which 

lighter points represent sound wave propagation. A line in black delimitates shadow zone at its bottom 

into which sound rays enter due to diffraction on turbulences. If there were no atmospheric turbulences 

incorporated into the model but prediction would be based on models related to temperature changes 

or wind this area would be a silent shadow zone. 

2.11. Doppler effect  

Doppler effect (Christian Doppler, 1803-1853) was originally introduced to explain change in the 

emitted light in astronomy (blue shift or red shift) resulting from movement of stars. It is very 

noticeable effect in sound, especially today when we travel in fast cars and trains as well as we use fast 

vehicles equipped with sound sources. These vehicles travel is at speeds which are sizable fraction of 

the sound speed. The effect has found various significant technical applications in detecting motion of 

objects based on observed frequency shift. One very well-known application is the police radar to 

control speed of vehicles on the road. In acoustics, the most prominent applications are in 

ultrasonography for medical purposes, like measurement of blood flow velocity in veins and arteria by 

Doppler ultrasonography.  



 

Fig. 2.34. Doppler effect: (a) Observer moves toward the still sound source. (b) Sound source moves at some 

speed towards still observer. 

 

Doppler effect is the shift in the frequency of observed signal resulting from a movement with velocity 

v of the signal source S or the observer O. To notice the change in frequency the distance between 

source and observer must be changing in time otherwise two different Doppler shifts compensate each 

other. The process is very different for the case when observer moves and for the case in which the 

source moves although the resulting equations are quite similar. 

When the source stays in the same location and the observer moves there is an apparent change in 

frequency (not related to actual wavelength) seen only by moving observer due to the increase in his 

relative speed sound. In this case, the apparent increased speed sound is the sum of the speed sound in 

the medium and the observer’s speed of movement. This causes the apparent change in period of 

sound and received frequency. The acoustic field produced by the source remains unchanged (Fig. 

2.34a). 

When the source moves entire acoustic field produced by the source is modified with the wavelength 

in front of the source shortened and enlarged behind the source (Fig. 2.34b). Therefore moving source 

has different directional frequency characteristics than this source standing still. The major reason for 

such a picture is that the propagation speed of sound in the medium is independent from any 

movement of source and depends only on the physical properties of medium. Moving source chases 

the propagated wave what results in actual shortening the wavelength in front of the source. In a 

similar way, the sound source moves away from the wave propagated into direction opposite to the 

direction of movement. This results in actual decrease of the wavelength. In effect, all observers in 

front of the moving source face the sound propagated with shortened wavelength and experience real 

increase in frequency. All observers behind the moving source face the sound propagated with 

enlarged wavelength and experience decrease in frequency. As it was said earlier source movement is 

the way to change the directional frequency characteristics of the sound source. It is sometimes used 

by violinists who move the instrument back and forth to produce some impression of vibrato (create 

frequency modulation). 

For the case of observer moving with velocity vobs towards a sound source the apparent sound speed 

equals sum of sound speed c and vobs resulting in higher frequency received by the observer: 

fobs = (c + vobs)/λ      (2.45) 

where λ = c/fsc therefore 



fobs = ((c + vobs)/c)∙fsc      (2.46) 

Similarly when the observer moves away from the source 

fobs = ((c − vobs)/c)∙fsc      (2.47) 

It is worth to note, that with for the same vobs observer moving away from the source observes larger 

change in frequency and thus larger pitch jump than moving toward the sound source. For example, for 

car at speed of 120 km/h (33.3 m/s) frequency is increased at ratio of 1.097 (160 cents) when moving 

towards the sound source; it is decreased at ratio of 1.11 (−177 cents) when moving away from the 

source. For very high vobs this difference is more remarkable. If vobs = 0.5c (171.5 m/s or 617.4 km/h) 

the upward pitch jump is by musical fifth, and downward pitch shift by musical octave. 

For the case of source moving with velocity vsc the actual (real) decrease in wavelength in direction of 

source movement is like the sound speed c was decreased by the velocity vsc: 

λ = (c − vsc)/f.      (2.48) 

However, the speed of propagation of this wave is c, therefore all observers will perceive frequency f= 

c/λ.∙Frequency fgen generated that way and received by all observers will be: 

fgen = c/(c − vsc) ∙fsc.      (2.49) 

Similarly for sound wave behind the source propagated in the direction opposite to the direction of 

movement: 

fgen = c/(c + vsc) ∙fsc.      (2.50) 

 

If both observer and sound source move towards each other, the superposition gives change in 

frequency as: 

fobs = ((c + vobs)/c)∙fgen = (c + vobs)/ (c − vsc) ∙fsc   (2.46) 

The third factor which can be taken into account in Doppler effect is the constant move flow of the 

medium. It can be analyzed formally in similar way to analysis of the movement of the observer. 

 

2.12. Wave interference 

Interference is a phenomenon of influencing and disturbance of a sound wave by identical waveform 

which reached the same area in space. An example of interference is given in Fig. 2.35 



 

Fig. 2.35. Sound interference of two identical spherical. Solid lines indicate plases of compression in wave, 

and dashed lines places of rarefaction. Coincidence of compression areas leads to increased compression and 

similarly coincidence of rarefied areas leads to the increased rarefaction. In places where compression and 

rarefaction phases overlap the wave cancels each other. From reference [1]. 

 

Interference will always take place when identical soundwave patterns will overlap. This happens 

when two sound sources at different space locations produce identical soundwaves. While it is difficult 

to make such a sound sources by technical means in many real circumstances conditions for 

interference occur because of reflections and diffraction. Reflection creates sound source image of 

correlated waveform pattern with some amplitude scaling (due to attenuation at the reflection). This 

makes conditions for interference. Very straight coherent sources of spherical wave are shown in Fig. 

2.35. These coherent two sources producing strong interference pattern result from diffraction of single 

plane or spherical wave on narrow slits. Coincidence of compression (solid lines) produced by one 

source with compression produced by the other source leads to increased compression in places where 

solid lines cross. Coincidence of rarefaction produced by one source with rarefaction produced by the 

other source, leads to increased rarefaction (crossing dashed lines). These are places denoted as 

‘constructive interference’ in Fig. 2.35. Coincidence of rarefaction and compression (crossings of 

dashed and solid lines) cancels each other. These are places denoted as ‘destructive interference’ in 

Fig. 2.35.  

Interference is always possible when overlapping sound waves are coherent what means that there is 

strong correlation between them. In the sound field this is usual a sound pattern and its image coming 

from a reflection or diffraction. Adding such waveforms makes amplitude doubled in all places of 

constructive interference (+ 6 dB), and amplitude is zeroed in places of destructive interference 

because of compressions and rarefactions that cancel each other. When two waver are uncorrelated 

then the addition is purely energetic (+3 dB). 

 

2.13. Standing waves 

2.13.1. Reflection from one wall 

Creation of standing waves is the most important effect of the interference. Standing wave is an 

important issue in room acoustics and is treated in details in the section on concert halls and room 

acoustics. Chances for standing wave creation are always when there is a reflection for a wall. The 

boundary conditions impose that there is no particle displacement at the wall (as wall impedance z = 

∞). A reflected wave having the same frequency and traveling in the opposite direction is 

 



superimposed on initial sound wave: 

p1(x,t)+p2(x,t)=A1sin(2πft − kx) + A2sin(2πft + kx), k = 2π/λ   (2.47) 

Assuming for simplicity that A1 = A2 = A: 

p1(x,t)+p2(x,t)=2Acos(kx)∙sin(2πft)    (2.48) 

Nodes of standing wave where the pressure vanishes occur at 

 xn = (2n-1)λ/4 (n = 1,2,3, ..).      (2.49) 

These are the points in space (it was assumed that the wall is at location x = 0) where function cos(kx) 

= 0. Maximum sound pressure of standing wave occurs at locations:  

xn = nλ/2, (n = 1,2,3, ..).      (2.50) 

The possible excitation of standing waves indicates that sound pressure measurements close to the wall 

can be inaccurate as the standing wave may cause an increase in the amplitude by up to +6 dB. 

Effective excitation of standing wave depends on the position of sound source: for pressure source − 

points at locations as in Eq. (2.50); for velocity source (oscillating) source − points at locations as in 

Eq. (2.49). 

 

2.13.2. Reflections from two walls 

Different standing wave occurs between two parallel walls facing each other at distances 0 and L. 

Boundary conditions at two walls impose that a standing wave can be created for all frequencies 

related to wavelengths λ = 2L/n (n = 1, 2, 3, … ). Set of resonant frequencies corresponding to series of 

standing waves between two walls separated by L is harmonically related: 

 fn = c/λ = (c/2L)∙n.      (2.50) 

Such a standing wave is an unwanted phenomenon in room acoustics especially affecting sound in so 

called small rooms. 

 

3. Sound sources 

Radiation from sound sources is an important section in acoustical analysis involving considerable 

mathematics. In theoretical considerations, all sound sources can be represented by closed surface 

surrounding the source having at all points predefined sound pressure and particle velocity in such way 

that the external sound field is identical to that produced by analyzed sound source. Natural vibrating 

bodies which often are the sound sources, have complex modes of vibration. These sound sources can 

be very difficult to analyze mathematically. In many instances, simplification to sources of simpler 

modes of vibration is sufficient approximation. Therefore, analysis of such mathematically simple 

sources as pulsating sphere, oscillating sphere and vibrating rigid piston are considered to be classical 

problems in acoustics. Second class of sources are monopole sources, linearly positioned monopole 

sources, dipoles and quadrupoles. In many instances these highly theoretical sound sources are items 

for simulations of real sound sources or sources developed by engineers. For instance, a monopole or 

pulsating sphere well represent small sources in low frequency range, oscillating  sphere represents 

noise sources created by vibrating parts of machinery, a vibrating piston is good representation of such 



products like the loudspeaker.  

 

3.1. Pulsating sphere and monopole point source 

Pulsating sphere and monopole point source are the simplest acoustical sources propagating the 

spherical wave. Pulsating sphere of radius a is shown in Fig. 3.36.  

 

Fig. 3.36. Pulsating sphere of radius a, and velocity v at the surface. Q is the directional pattern of the source. 

From reference [8]. 

The monopole point source is the theoretical idealization of pulsating sphere by setting a → 0. Such 

idealization is convenient as for a sphere of radius a the acoustical field in not defined for r < a. The 

point source is the easiest sound source to model theoretically but it is the most difficult source to 

construct. In laboratory equipment, the pulsating sphere is approximated by a twelve-speaker spherical 

sound sources such as one shown in Fig. 3.37. 

 

 

Fig. 3.37.  Twelve-speaker omnidirectional sound source: a laboratory construction of pulsating sphere. Bruel 

& Kjaer Omni Power Sound Source - type 4292. 

 

The pulsating sphere and monopole point source are described by the following sound pressure and 

particle velocity (in case of the sphere these quantities refer to the surface of the sphere). For monopole 

generated sound pressure and particle velocity are: 

      
 

   
          

    (2.51) 
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In these equations the Q is a new element. The Q is called point source strength. For the sphere of a 

radius a these equations hold with source strength  

  
     

     
     

where v is the velocity of the sphere surface. 

 

3.1.1. Pulsating sphere radiation impedance 

Most important quantity characterizing the sound source is its radiation impedance zr. For pulsating 

sphere 

       
     

       
  

  

       
   

   (2.52) 

Radiation impedance describes the sound propagation from the source, in this case the spherical sound 

source. Assuming the sound source is driven by some electrical circuit, the radiation impedance is that 

impedance, which is seen by the circuit, for instance power amplifier as a terminating load to the 

circuit. Radiation impedance is usually graphically presented in a form of reduced radiation resistance 

and reactance Z = Rj + jXj = zr/ρ0c. This is to unify the functions for all media of propagation (gases 

and liquids). 

 

Fig. 3.38. Radiation resistance and reactance of pulsating sphere of radius a. From reference [9]. 

Radiation resistance represents ability of the source to propagate sound into the sound field. Radiation 

reactance represents the energy transferred to the velocity of the particles in the direct vicinity of the 

source; however, this vibration is not transferred farther to the field. Rather energy is returned to the 

sound source. Functions in Fig. 3.38 show that pulsating sphere reaches its full effectiveness in 

propagation of energy to the sound field for ka > 3. This corresponds to the radius of the sphere equal 

or larger than 0.5λ. For ka = 1 (a = 0.16λ), there is the maximum value of reactance, thus highest 



interference with the nearest layers of medium but this energy is not well transferred to the medium in 

the far filed. At this point the resistance equals 0.5, thus 50% of its maximum value. Below a = 0.16λ 

(ka = 1), the reactance is larger than resistance showing that there is more energy in near field than 

transferred to the far field. In practice, to record any signal in such a low frequency range it is 

necessary to listen to or place the microphone close to the surface of the source. To give same 

imagination on numbers: a spherical sound source of 5.5-cm radius (diameter of an 11-cm ball) in air 

is totally ineffective in generating 100-Hz wave (Rj = 0.01), at 1 kHz Rj = 0.5, and interaction with 

neighboring space is the highest. Finally, for 3 kHz and above the source reaches its maximum 

propagation to the medium. 

For the spherical sound source and ka < 0.3 (low frequency range), domination of reactance means that 

almost all energy is merely transferred to the mass of air just around the source. This mass reactance is 

estimated as Mr = 4πa
3
ρ0. Thus, it is three times larger than the mass of air enclosed inside the 

spherical source (4πa
3
ρ0/3). Mass reactance is negligible in high frequency range. 

Monopole point source in an important theoretical model of the spherical wave sound source since 

combination of such sources is used to model sound sources of more complex directional properties. 

These models include dipoles, quadruples or linearly arranged sources of various kind and mutual 

phases of pulsation. 

 

3.2. Oscillating spherical source and dipole source 

Oscillating sphere is the second sound source out of set of basic sound sources treated analytically. 

This source is easy to be constructed, and actually many elements in machinery which are sources of 

noise can be modelled as oscilating shperical source. Oscillating sphere of radius a is shown in Fig. 

3.39.  

 

 

Fig. 3.39. Oscillating sphere of radius a, and velocity v of oscillation. Q is the directional pattern which is 

bidirectional. From reference [8]. 

The dipole consisting of two monopole point sources acting in opposite phases located at infinitively 

small distance from each other is the theoretical idealization of oscillating sphere sound source (Fig. 

3.40). This construction shows that the dipole sound source and oscillating sphere sound source have 

bidirectional directional pattern governed by cosΘ function. A comparison between the pulsating 

sphere and oscillating sphere directional pattern in dB scale is shown in Fig. 3.41. 



 

 

Fig. 3.40. Geometrical construction of monopole 

sound sources acting in opposite phases to 

represent infinitively small oscillating sphere. 

From reference [9]. 

 

Fig. 3.41. Comparison of directional patterns for 

pulsation and oscillating spherical sound 

sources. From reference [10]. 

 

 

Equations for the sound pressure and particle velocity of the oscillating sphere and dipole source are 

more complex and can be found in suggested readings. 

 

3.2.1. Oscillating sphere radiation impedance 

Radiation impedance of oscillating sphere is given by 

   
 

 
    

     

       
  

           

       
   

  (2.53) 

Reduced radiation resistance and reactance Z = Rj + jXj = zr/ρ0c is shown in Fig. 3.42. There are 

several differences in wave propagation by oscillating (Fig. 3.42) and pulsating sphere (Fig. 3.38) 

worth noting. 

 

Fig. 3.42. Radiation resistance and reactance of oscillating sphere of radius a. From reference [9]. 

Even for infinitely small λ/a (large ka) radiation resistance of oscillating sphere does not reach Rj = 1. 



Its full effectiveness in propagating energy to the sound field for ka > 3 is 1/3, three times poorer than 

for pulsating sphere. As can be noticed from Figs. 3.39 and 3.40 this is because only for Θ = 90
o
 and 

270
o
  cosΘ = 1, angles which point along the main axis of oscillation. At these angles the sphere 

surface is perpendicular (normal) to direction of movement. For Θ = 0
o
 and 180

o
 there is a grazing 

angle od sphere surface with direction of oscillation and then no wave is generated. The eight-like 

shape of directional pattern results in less effective overall transfer of energy to the far field. There is 

also noticeable difference in Rj as compared to pulsating sphere for ka < 2. The Rj diminishes with 

fourth power of ka. Thus the effectiveness of the source for large wavelengths is much smaller than in 

case of pulsating sphere. In contrast, the temporary transfer of energy to nearfield is larger for the 

oscillating sphere as the Xj is twice as large as for pulsating sphere in low frequency range (small ka). 

 

3.3. Oscillating piston in an infinite baffle 

Mathematical analysis of an oscillating piston as a sound source can be done in several conditions of 

vibration. One condition is to analyze piston which oscillates freely (alone). In this condition, 

efficiency of propagation in low frequecy range is small and the source is somewhat similar to 

oscillating sphere. It is more proper and common to analyze piston oscillation when it is fit to an 

infinite rigid not oscillating baffle. In such condition a piston of radius a oscillates at velocity v but the 

baffle rigidly stays at x = 0 (baffle velocity vb = 0). The hafspace in the front of the piston is separated 

from the half space at the back what allow for efficient radiation in low frequency range. It is a 

standard for loudspeaker systems to work in boxes separating front of the loudspeaker from its back to 

enhance radiation in for frequencies.  Oscillating piston in an infinite baffle is thus correct theoretical 

representation of the loudspeaker in its normal conditions of work. Third condition is to consider the 

piston oscillating at the end of the long pipe. This is to model real situation of many kinds, for instance 

action of wind musical instrument or organ pipe where radiation from the pipe end can be treated as 

radiation from a piston attached to the pipe. Another practical application is the output from the 

ventilation duct which is usually a source of noise. Actually an end correction for Helmholtz rezonator 

discussed in section 1.6 is also derived from the radiation of a piston. The air movement in the 

resonator neck is treated as a vibration of a piston. 

 

Fig. 3.43. Resistance and reactance of the oscillating piston of radius a in an infinite baffle. From reference 

[9]. 

In the following, some examplesof solutions will be given for a condition of piston vibrating in the 

infinite baffle. It is assumed that the piston is rigid (oscillates equally across its entire surface), and that 



the baffle is still. To get pressure or velocity at any given point in space it is necessary integrate partial 

pressures coming from the subsequent points on a piston. These leads to specific algebraic solutions 

which are complex enough to refer the reader to numerous other literature.  

 

3.3.1. Oscillating piston radiation impedance 

The radiation resitance and reactance of a piston in rigid baffle are shown in Fig. 3.43. Qualitatelively 

the functions are quite similar to Rj, Xj for the pulsating sphere. The resistance Rj slope is steeper than 

that for the sphere and lets the function reach value of 1 at  smaller ka values than for the pulsating 

sphere. The piston in a baffle more effectively radiates sound for 1 < ka < 3 than pulsating sphere. A 

comparison of a piston to oscillating sphere reveals that in high frequency range (ka > 3) radiation 

resistance is about 1, the three times larger value than for oscillating sphere. It is like for the 

oscillatoing sphere. This effect is a result of applying infinite baffle around the oscillating piston.  

 

3.3.2. Directivity pattern 

For the piston, the directivity pattern in the far field (further away than about 10 wavelengths λ from 

the center of the piston) is well defined (i.e. is remains the same at any value of radius r) and different 

at low and high frequencies. Change in directivity pattern with frequency (i.e. with wavelength λ 

compared to piston radius a) makes oscillating piston different from the pulsating and oscillating 

sphere discussed earlier. Due to interference of waves incoming from various points on the piston 

surface to the point in space at distance r from the piston the directivity pattern (Fig. 3.44) alters from 

omnidirectional for ka < 1  (λ > 6a) to highly directional for ka > 4 (λ < 1.5a) with several side lobes 

on both sides of the main lobe. 

 

Fig. 3.44. Directional patterns for the oscillating piston of radius a in an infinite baffle for various ka values. 

From reference [8]. 



In the near field, the sound field is very complex because of the interference of waves produced by 

different points on the piston surface. In the literature, exact calculation of pressure change with 

distance exists only for points on axis of piston rotational symmetry (normal line in the piston 

center). 

Example of results of such calculations is shown in Fig. 3.45 for a piston of a radius a = 4λ (piston 

diameter 2a =  8λ). This is fairly wide piston as it corresponds to piston of 27-cm diameter 

generating 10-kHz signal (λ = 3.4 cm, compare the loudspeaker sizes used for 10 kHz signal). 

Nevertheless, the changes seen in the pressure along the normal distance from the center of the 

piston are substantial. In the nearfield, for distance smaller than the diameter 2a pressure P exhibits 

strong variations between 0 and the maximum value. This variation comes from the strong 

interference of waves at arriving at different phases from various points on the piston. This phase 

variation is not that large at long distances from the piston i.e. in the far field. Dashed line 

representing amplitude approximation valid in the far field shows this. At distances r > 30λ (at about 

1 meter for the example with 10 kHz signal) amplitude change shown by dashed line decreases 

smoothly with r. This approximation is not correct in the near field. 

 

Fig. 3.45. Variation of pressure amplitude (solid line) on the axis of symmetry of vibrating piston of radius 

a = 4λ (diameter of 8λ). In the nearfield, at a distance from the piston smaller than the diameter 2a = 8λ 

pressure P exhibits strong variations between 0 and the maximum value. Dashed line represents amplitude 

approximation valid in far field, for r > 30λ. From reference [11]. 

Theoretical consideration referring to the oscillating piston are considered important as this simple 

model source is quite good approximation for many practically existing sound sources. 
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